

Manual de Operação \mathbf{IPTV}

Anexo ao Manual de Operação do TSW800TP+

Versão: 2 Revisão: 4 Setembro/2010

Direitos de edição

- Este manual foi elaborado pela equipe da **Wise Indústria de Telecomunicações**. Nenhuma parte ou conteúdo deste manual pode ser reproduzido sem autorização por escrito da **Wise Indústria de Telecomunicações**.
- A Wise Indústria de Telecomunicações se reserva o direito de modificar seus produtos, assim como o conteúdo de seus manuais, a qualquer momento, sem aviso prévio, de acordo com as próprias necessidades.
- Como os produtos da **Wise Indústria de Telecomunicações** se mantém em constante aperfeiçoamento, algumas características podem não estar inclusas nos manuais, sendo anexadas ao produto em adendos.
- Qualquer contribuição ou crítica que possa melhorar a qualidade deste produto ou manual será bem vinda pela equipe da empresa.
- Se o conteúdo deste manual estiver em desacordo com a versão do equipamento fornecido ou seu manuseio, por favor, entre em contato com a empresa:

Telefone/Fax: 55-61-3486-9100 **E-mail:** wise@wi.com.br

Wise Indústria de Telecomunicações

Setor de Indústria Bernardo Sayão SIBS quadra 01 conjunto D lote 12 Núcleo Bandeirante – Brasília – DF – Brazil CEP 71736-104 Visite a nossa Home Page: http://www.wi.com.br

Sumário

1	Funcionamento do IPTV no TSW800TP+	3
2	Configuração do Teste IPTV2.1Abas do IPTV2.2Testes de IPTV via Ethernet	4 4 4
	 2.3 Testes de IPTV via xDSL	$\frac{4}{4}$
3	Aplicação do Teste IPTV	6
4	Conclusão do Teste IPTV	12

1 Funcionamento do IPTV no TSW800TP+

O módulo IPTV do TSW800TP+ foi desenvolvido para instalação, manutenção ou reparo dos serviços de IPTV (*Internet Protocol TV*) e VoD (*Video on Demand*) de linhas xDSL. O produto permite verificar se o fluxo de vídeo (*stream*) enviado pelo servidor IPTV ou VoD está chegando e efetua várias medidas com a finalidade de avaliar a qualidade da conexão. As taxas dos fluxos de vídeo, áudio e dados são medidos separadamente além do total de pacotes de cada um. Também são contabilizados diversos tipos de erro que facilitam verificar o que está acontecendo quando o serviço não atinge o desempenho esperado. A perda de pacotes, atrasos e jitter dos mesmos também são contabilizados. Os parâmetros mais importantes são comparados com limiares pré-definidos que definem o nível de qualidade do serviço (QoS).

O TSW800TP+ permite o teste via modem ou conectando-se diretamente na linha. As medidas são as seguintes:

• Erros

- Erro de continuidade
- Indicador de erro
- Erro de sincronismo
- Perda de pacote RTP
- Pacote RTP fora de sequência
- Descontinuidade de pacote RTP

• Medidas de Jitter

- Jitter de pacote
- Jitter de PCR
- Histograma de Jitter de pacote e de PCR dos últimos 5 minutos

• Estatísticas Stream (TS)

- Total de pacotes de vídeo
- Total de pacotes de áudio
- Total de pacotes de dados
- Total de pacotes desconhecidos

• Taxas de Stream

- Taxa do stream de vídeo
- Taxa do stream de áudio
- Taxa de stream dados
- Taxa de stream desconhecidos

• Número de canais (PIDS da PAT)

- Percentual de banda usada por cada canal

• Medidas do IGMP

- IGMP latency (tempo para pedir o canal e chegar o stream)

2 Configuração do Teste IPTV

2.1 Abas do IPTV

Tela inicial com as abas ETHERNET, ADSL e SYSTEM e MODULES.

2. Ethernet Configuration 3. Modem Configuration 4. IPTV Via Ethernet 5. Sistema de Gestão Wise	1. Test Via	Ethernet		
3. Modem Configuration 4. IPTV Via Ethernet 5. Sistema de Gestão Wise	2. Ethernet	Configura	tion	
4. IPTV Via Ethernet 5. Sistema de Gestão Wise	3. Modem Configuration			
5. Sistema de Gestão Wise	4 IPTV Via	Ethernet		

2.2 Testes de IPTV via Ethernet

Na primeira tela do TSW800TP+ selecionar a aba *Ethernet* usando a tecla F1. Antes de entrar no modo IPTV, apertar a tecla numérica 2 ou mover o cursor até o item *Config* e apertar a tecla *START/STOP* para configurar o modo de obter o endereço IP (manual ou automático). Editar também o endereço MAC se necessário que ele seja o mesmo do STB. Maiores explicações sobre o item *Config* podem ser vistas no manual básico do TSW800TP+.

Para entrar no módulo IPTV, voltar pra tela inicial, pressionando a tecla F1, e apertar a tecla numérica 4 ou mover o cursor até o item IPTV e apertar a tecla START/STOP.

2.3 Testes de IPTV via xDSL

Selecionar a aba *Line* e efetuar a configuração de linha conforme descrito no manual básico do TSW800TP+. Na Oi e na Brasil Telecom o parâmetro protocolo é *BRIDGE*. Na Telefônica usa-se o *RFC2684(MER)* que requer uma tela adicional com os *IPs* de *LAN*, *WAN*, máscaras de rede e servidores de DNS primário e secundário.

Para entrar no módulo IPTV, voltar pra tela inicial e apertar a tecla numérica 4 ou mover o cursor até o item IPTV e apertar a tecla START/STOP.

2.4 Tela de configuração do IPTV

Testes, *Ethernet* ou *xDSL*, têm a mesma tela de configuração:

	<u>HERNET->IPTV</u> IFIG		7% 💳
Stream:		Stream 1	•
Protocol:		Multicast MPEC	32-TS/RT -
IP Address	:	10.0.0.1	
Port Number:		3001	
Status: Link Down Press Edit to	INACTIV change parame	'E ters	
Home	View	Actions	Edit

- F1 Home : Volta a tela inicial;
- F2 -View: Mostra 10 opções de telas que podem ser visualizadas. Veja seção 3;
- **F3 Actions**: Mostra opções para começar e parar os testes e também salvar os resultados. Veja seção 3;
- F4 Edit: Permite editar o parâmetro onde está o cursor;
- Stream: Stream é o termo em inglês para designar o fluxo de vídeo. São definidos até 3 streams, que aparecerão da seguinte forma na tela:

Stream:		Stream 1	-
Protocol:		Stream 1	
IP Address		Stream 2	
	э.	Stream 3	
Port Number:	er:	13001	
Status: Link Down	INA	ACTIVE	

• Protocol:

Este parâmetro define o tipo de protocolo de transporte usado. Embora o protocolo de codificação de vídeo seja o MPEG-4, muitos provedores usam a forma de encapsulamento do MPEG-2 para transporte. Desta maneira os pacotes TS (*Transport Stream*) carregam os dados codificados em MPEG-4. Os pacotes TS podem ainda ser encapsulados de duas formas: UDP/IP e RTP/UDP/IP. Há também uma diferença entre o IPTV, que usa o protocolo IGMP (*Internet Group Management Protocol*) para se inscrever num grupo *multicast* e o VoD, que usa o protocolo RTSP (*Real Time Streaming Protocol*) para se inscrever num grupo *unicast*.

Stream:	Stream 1
Protocol:	Multicast MPEG2-TS/RT 💌
IP Address:	Multicast MPEG2-TS/UDP
Port Number	Multicast MPEG2-TS/RTP
i on number.	Multicast MPEG2-TS/RTP B
	Unicast MPEG2-TS/UDP
Status:	INACTIV Unicast MPEG2-TS/RTP
Link Down	Unicast MPEG2-TS/RTP Br

Multicast MPEG2-TS/UDP: Nesta opção, os pacotes TS do MPEG-2 são encapsulados diretamente em cima do UDP/IP. No Brasil esta é a forma escolhida pela Telefônica e OI para o IPTV.

Multicast MPEG2-TS/RTP: Nesta opção, os pacotes TS do MPEG-2 são encapsulados dentro de pacotes RTP que por sua vez são encapsulados no UDP/IP.

 $\frac{\textbf{Multicast MPEG2-TS/RTP BrT}: Nesta opção, os pacotes TS do MPEG-2 são encapsulados dentro de pacotes RTP que por sua vez são encapsulados no UDP/IP. No Brasil esta é a forma escolhida pela Brasil Telecom.$

Unicast MPEG2-TS/UDP: Nesta opção, os pacotes TS do MPEG-2 são encapsulados diretamente em cima do UDP/IP. No Brasil esta é a forma escolhida pela Oi para o VoD.

Unicast MPEG2-TS/RTP: Nesta opção, os pacotes TS do MPEG-2 são encapsulados dentro de pacotes RTP, que por sua vez são encapsulados no UDP/IP.

Unicast MPEG2-TS/RTP Brt: Nesta opção, os pacotes TS do MPEG-2 são encapsulados dentro de pacotes RTP, que por sua vez são encapsulados no UDP/IP. No Brasil esta é a forma escolhida pela Brasil Telecom para o VoD.

• IP Address:

Este parâmetro define o IP do canal de IPTV que se deseja receber. É necessário conhecer este IP para enviar um pacote IGMP pedindo para entrar no grupo *multicast* que está recebendo o canal. Só depois de aceito este pedido é que o *stream* de vídeo começa a ser enviado pelo servidor. Nos protocolos *unicast* não é feita a configuração do IP.

• URL (RTSP):

Este parâmetro define a URL do servidor de VoD. É necessário conhecer esta URL para enviar um pacote RTSP pedindo para entrar no modo *unicast*, onde o usuário é o único a receber aquele vídeo. Só depois de aceito este pedido é que o *stream* de vídeo começa a ser enviado pelo servidor. Somente nos protocolos *unicast*.

Stream:		Stream 1
Protocol:		Unicast MPEG2-TS/UDP
URL (RTSP	?)	10.0.0.1
Status: Link Down	INACTI	Æ
Status: Link Down Press Edit to	INACTI) change parame	/E

• Port Number:

Este parâmetro define o número da porta onde a comunicação IPTV vai funcionar. Somente nos protocolos *multicast*.

3 Aplicação do Teste IPTV

Acionando a tecla F3 (*Actions*) é possível iniciar o teste de IPTV selecionando *Start Stream*. Deve ser escolhido o número da *stream* configurada. Pode-se iniciar uma de cada vez e ter as três simultaneamente.

Sueam.	Stream 1
Protocol:	Multicast MPEG2-TS/UD -
IP Address:	10.0.0.1
Port Number:	3001
Status: INAC	TTP 1. Start Stream 1

Se o protocolo for de IPTV (multicast) um pacote IGMP será enviado, se o protocolo for de VoD (unicast) um pacote RTSP será enviado, e em instantes o fluxo de vídeo começa a chegar

e todas as medidas são contabilizadas Através da tecla F2 (View) pode-se escolher a tela que se deseja visualizar. A tecla F4 (*Stream*) define qual dos três streams terá seus contadores apresentados na tela escolhida.

• Video Config

Tela de configuração inicial para ver ou alterar os parâmetros escolhidos, pressionando F2 (View), as opções serão mostradas (conforme figura anterior). Pressione #1 ou selecione Video Config e pressione a tecla **START/STOP** para mostrar a tela de configuração inicial.

Stream:	Г	Stream 1	•
Protoco	1. Video Contig 2. IP results	Multicast MPEG2	2-TS/UD -
IP Addr	3. Stream Statistics	0.0.0.1	
Port Nur	4. Stream Rates 5. QoS Stream 6. QoE	3001	
Status:	7. Errors		
Link Down	8. Jitter		
Press Ec	9. PID Map 0. Band Usage	irs	
Home	View	Actions	Edit

• IP results

Tela com os valores do IP recebido, IP do Gateway, IP do servidor de DNS e a máscara da sub-rede.

Parameter	Value	
IP Address	10.0.0.1	
Subnet Mask	255.0.0.0	
Gateway IP	10.0.0.254	
DNS Server	8.8.8.8	

• Stream Statistics

Tela com a contagem total de pacotes TS (pacote de transporte do MPEG-2 com 184 bytes de dados e 4 bytes de header). Também apresenta separadamente estas contagens para vídeo, áudio, dados e pacotes não identificados, além do total em bytes.

neceivea	IS Packe	ts	Bytes
Total	0	1	0
Video	0	1	0
Audio	0	1	0
Data	0	1	0
Unknown	0		0
	s	tream 1	

• Stream Rates

Tela com a taxa em Kbps dos diferentes tipos de pacote - vídeo, áudio, dados e desconhecidos.

Rate(Kbps)	Current	Average	Min	Max
Total	0	0	0	0
Video	0	0	0	0
Audio	0	0	0	0
Data	0	0	0	0
Unknown	0	0	0	0
		Stream 1	Î	

• QoS Stream

Tela com os parâmetros de QoS, seus valores atuais, valores máximos e indicação se estão dentro dos limiares definidos para a qualidade do serviço.

Parameter	Current	Max	Score
PCR Jitter	0 ms	0 ms	Pass
Latency	0.0 ms	NA	Pass
Continuity Errors	0.00%	NA	
Error Indicator	0	NA	Pass

- PCR Jitter (Program Clock Reference)

Mede o jitter avaliado ao analisar o *clock* de referência gravado em alguns pacotes. O jitter é a oscilação do intervalo de tempo entre o recebimento dos pacotes comparando com a hora gravada na geração deles. Este intervalo deveria ser igual a diferença entre as horas gravadas, mas codificador e a rede podem causar atrasos em determinados pacotes. Se a oscilação é excessiva pode causar problemas ao decodificador. O jitter máximo para aprovar a qualidade do serviço é de 10ms.

– Latency

Mede o tempo entre o envio de um pedido para receber um determinado programa (*stream*) e o momento que o fluxo de pacotes começa a chegar. A latência máxima para aprovar a qualidade do serviço é de 250ms.

- Continuity Error (Cont. Err.)

Mede a perda da seqüência dos pacotes. Os pacotes TS do MPEG-2 têm um contador de sequência que permite a recepção saber que um pacote não chegou na hora que deveria. Na tela de QoS esse contador é percentual, ele conta o total de erros de continuidade dividido pelo total de pacotes TS do MPEG2. O valor percentual máximo para aprovar a qualidade do serviço é de 0.1

– Error Indicator (Err. Ind.)

Indica se houve um problema na geração. Esta indicação é feita pelo codificador ao perceber que há dados corrompidos e não é um problema na rede. Somente o valor zero aprova a qualidade do serviço neste item.

• QoE (Quality of Experience)

Esse novo termo vem sendo empregado para avaliar a percepção do usuário final quanto a qualidade da mídia entregue. Para medir QoE em IPTV, usa-se o MDI (*Media Delivery Index*), esse índice é composto por duas medidas, são elas DF (*Delay Factor*) Jitter e MLR (*Media Loss Rate*). Esse índice é definido pela RFC 4445.

MDI	Current	Average	Max	Total
DF Jitter	0 ms	0 ms	0 ms	NA
Buffer Size	0	0	0	NA
MLR	0	0.00	0	0
		Stug on 1		

– DF Jitter

É uma medida em milisegundos, que indica o tempo de vídeo que é necessário armazenar, levando-se em conta a taxa atual do vídeo, para se eliminar o efeito de jitter no vídeo entregue ao usuário final. Esse parâmetro é utilizado para dimensionar o tamanho do buffer que um Set Top Box deve possuir, para o fluxo de pacotes corrente.

- MLR

O parâmetro MLR representa a quantidade de pacotes de mídia perdidos por segundo. Perdas devido a um overflow de buffer, que são causadas por congestionamento de rede ou mal configuração dos dispositivos de rede serão periódicas, resultando em muitos intervalos de tempo com valores de MLR positivos e similares. Já efeitos transientes, devido talvez, a ruídos causados por variações elétricas, irão resultar em um menor número de intervalos de tempo afetados, ou seja, os valores de MLR positivos serão mais espaçados e mais aleatórios.

• Errors

Tela com os diversos tipos de erro e a quantidade contabilizada.

Error		Value	
Continuity Er	rors		0
TS Lost			0
Error Indicate	or		0
Sync Errors			0
RTP Lost			0
RTP OOS			0
RTP Disconti	nuity		0
	S	Stream 1	
	A.C	Antinua	Character

- Continuity Errors

Registra a quantidade de perda de seqüência dos pacotes.

– TS Lost

Registra a quantidade de unidades de TS (*Transport Stream*) perdidas, vale destacar que cada pacote de vídeo, de acordo com o protocolo de transporte MPEG2-TS, possui sete unidades TS.

– Error Indicator

Registra a quantidade de pacotes que chegaram com o bit Error Indicator ativo.

– Sync. Errors

Registra a quantidade de vezes que não foi possível identificar pacote TS do MPEG-2 na camada de aplicação.

– RTP Lost

Registra a quantidade de quadros RTP perdidos quando o protocolo é MPEG-2 Broadcast (RTP).

– RTP OOS

Registra a quantidade de quadros RTP fora de ordem quando o protocolo é MPEG-2 Broadcast (RTP).

– RTP Discontinuity

Registra a quantidade de quebras de seqüência de quadros RTP quando o protocolo é MPEG-2 Broadcast (RTP).

• Jitter

Tela com as contagens de **PCR jitter** e **Network jitter**. São mostrados os valores máximos e momentâneos. O Network Jitter é devido ao tráfego na rede. O PCR jitter pode ser causado pelo codificador, pela rede ou na recepção. Quando o protocolo for MPEG-2 Broadcast (UDP) os valores serão os mesmos. A latência do IGMP (**IGMP Latency**) também é mostrada nesta tela e mede o tempo entre o envio de um pedido para receber um determinado programa (stream) e o momento em que o fluxo de pacotes começa a chegar.

Parameter		Value	
IGMP Latency			0.0 ms
PCR Jitter Curr	ent		0 ms
PCR Jitter Max			0 ms

• PID Map

Tela com cada PID (*Packet Identifier*) recebido, o seu tipo e a sua descrição. O PID identifica a quem pertence aquele pacote. Se o PID é 0 o pacote é o PAT (*Program Association Table*) que é uma tabela com o PID de cada PMT (*Program Map Table*). Há uma PMT para cada canal (programa). Esta PMT é uma tabela com os PIDs dos pacotes de vídeo, áudio e dados para aquele canal.

PID	Туре	Description		
0	Data		PAT	
66	Data		PMT	
68	Video	ISO/IE	C 14496-2	Visual
69	Audio	ISO/I	EC 11172 A	udio
		Stroom	1	
		Jucan		

• Band Usage

Tela com o status e o percentual de banda usado por cada *stream*. O percentual de banda do canal é a taxa do canal dividida pela soma das taxas de todos os canais ativos.

		Duna Obuge(10)
Stream 1	INACTIVE	0%
Stream 2	INACTIVE	0%
Stream 3	INACTIVE	0%

4 Conclusão do Teste IPTV

Acionando a tecla F3 (*Actions*) é possível parar o teste de IPTV selecionando *Stop Stream*. Deve ser escolhido o número da *stream* que se deseja parar. Se houver mais de uma ativa é necessário parar uma de cada vez. Acionando a opção *Save* os resultados do teste podem ser salvos em um arquivo, como mostra a figura.

Look in:	iptvResu 🦳	lts	
Save As:	I		